10.5. CHANGE OF VARIABLES, NONLINEAR MAPS 247

Proof: For r small enough,

h(B(x,r)) ⊆ h(x)+Dh(x)B(0,r)+Dh(x)Dh(x)−1 B(0,εr)

⊆ h(x)+Dh(x)B(0,r)+Dh(x)B(0,εr)

⊆ h(x)+Dh(x)(B(0,(1+ ε)r))

and so mp (h(B(x,r)))≤ |det(Dh(x))|mp (B(0,(1+ ε)r)) . Also,

h(x+v) = h(x)+Dh(x)v+Dh(x)Dh(x)−1o(v)

and so∥∥∥Dh(x)−1 (h(x+v)−h(x))−v

∥∥∥ = ∥∥∥Dh(x)−1o(v)∥∥∥ = ∥o(v)∥ . Thus if r is

chosen sufficiently small, it follows that for v ∈ B(0,r)∥∥∥Dh(x)−1 (h(x+v)−h(x))−v∥∥∥< εr

and so, from Lemma 9.13.10, B(0,(1− ε)r)⊆ Dh(x)−1(h(x+B(0,r)

)−h(x)

).

h(

B(x,r))= h

(x+B(0,r)

)−h(x)⊇ Dh(x)B(0,(1− ε)r)

Therefore, since mp (B(x,r)) = mp

(B(x,r)

),

|det(Dh(x))|mp (B(0,(1− ε)r)) = |det(Dh(x))|(1− ε)p rpα p ≤ mp (h(B(x,r)))

so for r small enough,

mp (h(B(x,r)))mp (B(0,(1+ ε)r))

≤ |det(Dh(x))| ≤mp (h(B(x,r)))

mp (B(0,(1− ε)r))

The claim follows from this since ε > 0 is arbitrary. ■

Lemma 10.5.6 For a.e. x with |detDh(x)|> 0, limr→0mp(h(B(x,r)∩H))

mp(h(B(x,r)))= g(x)|detDh(x)| .

Proof: Using the result of Lemma 10.5.5, for a.e. x satisfying |detDh(x)| > 0, if rsmall enough, then

mp (h(B(x,r))) ∈ [|detDh(x)|mp (B(x,r))(1− ε)p , |detDh(x)|mp (B(x,r))(1+ ε)p]

Therefore, for Qr ≡mp(h(B(x,r)∩H))

mp(h(B(x,r)))≥ 1|detDh(x)|mp(B(x,r))(1+ε)p

∫B(x,r) gdmp so

1mp (B(0,r))(1+ ε)p

∫B(x,r)

g|detDh(x)|

dmp ≤ Qr

≤ 1mp (B(0,r))(1− ε)p

∫B(x,r)

g|detDh(x)|

dmp

and so for Lebesgue points of g, a.e. x with |detDh(x)| ̸= 0,

1(1+ ε)p ≤

g(x)|detDh(x)|

≤ 1(1− ε)p

Then for such x, 1(1+ε)p

g|detDh(x)| ≤ liminfr→0 Qr ≤ limsupr→0 Qr,≤ 1

(1−ε)pg

|detDh(x)| so,

since ε is arbitrary, limr→0 Qr =g(x)

|detDh(x)| . ■

10.5. CHANGE OF VARIABLES, NONLINEAR MAPS 247Proof: For 7 small enough,h(B(a,r)) C h(a)+Dh(«)B(0,r)+Dh (x) Dh(x)~'B(0,er)h(x) +Dh(a)B(0,r)+Dh(x)B i er)h(a) + Dh (a) (B eenand so my (h(B(a,r))) < |det (Dh (a))|m, (B (0, (INIA(x )0,(1+€)r)). Also,h(x)! o(v)and so Dh (x)! (h(a +0) —h(2)) -»| = pr (a) | o(v)| = |lo(v)||. Thus if r ischosen sufficiently small, it follows that for v € B(0,r)r)h(a@+v)=h(«)+Dh(«)v+Dh(a)D| pr (x)! (h(a +0) —h(2)) —o|| <erand so, from Lemma 9.13.10, B(0,(1—e)r) C Dh(x)~! (n (+807) — h(2)) ,h (B(@,r)) =h (+B (0,7) — h(a) 2 Dh (a) B(0, (1 -e)r)Therefore, since m, (B(a,r)) = mp (B(@.7)) ,|det (Dh (a))|m, (B(0, (1 —€)r)) = |det (Dh (x))| (1—€)? r? a, < mp (h(B(a,r)))so for r small enough,mp (h(B(«,r)))my (B(O,(1+€)r))The claim follows from this since € > 0 is arbitrary.< |det (Dh (x))| <. . mp(h(B(@,r)NH)) __ (a)Lemma 10.5.6 For a.e. x with \det Dh (x)| > 0,lim,_50 mo(h(Ber))) = WaADht yrProof: Using the result of Lemma 10.5.5, for a.e. x satisfying |detDh (x)| > 0, if rsmall enough, thenmp (h(B(a,r))) € [\detDh (x)|m, (B(a,r)) (1—€)”, |\detDh (a)| mp (B(a,r)) (1 +€)?]mp(h(B(se,r)H)) 1rip PBC.) = |detDh(a)|mp(B(w,r))(1-+e)? Ja(z,r) 8AMp SO1 | gmy, (B(0,r)) (1+)? JB(@,r) |\detDh (ax)|VTherefore, for Q, =dmp < Q,I g—_—__—_dmp (B(O,r)) (1—€)? ° I, (wr) detDh (x)|”and so for Lebesgue points of g, a.e. x with |\det Dh (x)| 4 0,1 g(x) 1(T+)? = |detDh(@)| = Oe)?1 1Then for such x, sep lDntey| S < liminf,_,9 Q, < limsup,_,9 Q,, < Ter [detDatw y 80since € is arbitrary, lim,—;9 Q; = eons |