20 CHAPTER 1. REVIEW OF SOME LINEAR ALGEBRA
has the indicated columns listed in order:Pi j
a11...
ai1...
a j1...
an1
,Pi j
a12...
ai2...
a j2...
an2
, · · · ,Pi j
a1p...
aip...
a jp...
anp
=
a11...
a j1...
ai1...
an1
,
a12...
a j2...
ai2...
an2
, · · · ,
a1p...
a jp...
aip...
anp
and so the resulting matrix is
=
a11 a12 · · · · · · · · · · · · a1p...
......
a j1 a j2 · · · · · · · · · · · · a jp...
......
ai1 ai2 · · · · · · · · · · · · aip...
......
an1 an2 · · · · · · · · · · · · anp
.
This has established the following lemma.
Lemma 1.6.3 Let Pi j denote the elementary matrix which involves switching the ith andthe jth rows of I. Then if Pi j, A are conformable, we have
Pi jA = B
where B is obtained from A by switching the ith and the jth rows.
Next consider the row operation which involves multiplying the ith row by a nonzeroconstant, c. We write
I =
r1r2...rn
where
r j = (0 · · ·1 · · ·0)